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Let A, be a set consistling of n elements. The main
problem considered in this thesis 1s that of finding the number

of elements in the class of all topologies on A,, 1.e. finding

the cardinality of the setf7== {T :T is a topology on Apl.
However, the related problems of counting certain kinds of
relations and digraphs on A, are also investigated. By
means of digraph topology, Bhargava and Ahlborn have shown
that these problems are indeed closely related to each other.
Furthermore, Chatterji has shown that these problems can be
those of counting the number of partial orders
on A, and on partitions of Ap. Making use of these results
we have obtained the exact number of homeomorphic and non-
homeomorphic topologies for n < 5 and partial results for
n=6. This method,which relies on the fact that all partial
- orders on a set can be represented by Hasse dilagrams,also
enables us to determine the number of T,-topologies on Aj,.
As a consequence, we have also obtained the number of homeo-
morphic and non-homeomorphic To—topologies for n < 5.
For sake of completeness we also present all known
results on counting topologies and related problems, as well

\ as upper and lower bounds for the number of topologies on An.




Lastly it is shown that the number of subsets in the
k+158Y | 0<k<n-1, largest topology for A, is given by (2K+1)
on-k-1

We remark here that even some reasonably approximate
general results for any n are very hard to get, and the
problem remains an open one except for some important con-
tributions made by Chatterji. For higher values of n, i.e.

n>6, even the use of brute force for counting becomes almost

impossible.
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INTRODUCTION AND SUMMARY

The principal objective of this thesis is to present
a useful and interesting method, developed by Chatterji [4],
of counting topologies on finite sets by means of Hasse
diagrams. The problem of counting topologles originally

appeared as an exercise in the classical text Set Topology,

by Vaidyanathaswamy [11]. This exercise asked: Enumerate
all the topologies which can be imposed on a set of four
points, and find an expression for t(n) the number of topo-
logies which can be imposed on a set of n points. However,
as yet, no general solution seems to have been found. Even
for the case n=4 the problem becomes very tedious; and for
values of n greater than six the task becomes virtually
impossible. A few papers ﬁave been wrltten on this and
related problems, ¢the most notable being that of Chatterji
[4], and the most recent being that of Krishnamurthy [8],
in which he obtains values for t(n), n<l, and a weak upper
bound for t(n). It may well be that there does not exist
a general expression for t(n), and the best that one can
hope for is to obtain sharp bounds.

The purposes of thls study are: (a) to reduce the

counting of topologies on a finite set A to the counting

of reflexive and transitive relations on the set A, which

-1~



can be systematically enumerated by means of Hasse dlagrams,
and to illustrate counting (of these relations) by means of
Hasse diagrams, (b) to obtain explicitly values of t(n), up
to n=5, and partial results for n=6, and finally (c) to
discuss a related problem of determining a bound for t(n),
n arbitrary but finite.

This thesis is presented in three chapters.

The first consists of definitions, notations, and
known results which we use throughout the following chapters.

The second chapter comprises more or less the main part
of this thesis. In there we present, following Chatterji [4],
various steps needed to reformulate the problem of rather
unstructured enumeration of topologies to an equivalent
fask of systematically counting certain partial orderings by
means of Hasse diagrams. This is accomplished by first
defining a family‘%Fof functions from a set A to its power
set 28, Each function f in ?fis then shown to be a Kuratowski
closure operator and hence defining a unique topology on A.
We then consider the familyé% of reflexive and transitive
relations on the set A, and show that there 1s one-to-one
correspondence between the elements ofEF and the elements
of . Finally we show that a further reduction is possible,
viz. we can restrict our consideration to the counting of
certain partial orderings induced by elements of&. When
this stage 1s reached we have completely reformulated the
problem in terms of partial orderings.

The above equivalent formulation of the problem, com-



bined with the known result that each partially ordered set
can be represented by a unique Hasse diagram, Szdsz [9],
enables us to use the Hasse diagrams to obtain a more
structured and systematic counting procedure than previously
available. We find that we need to construct only those
Hasse diagrams which represent distinct (non-order isomorphic)
partial orderings. Then applying usual combinatorial
techniques we determine the total number of partial orderings
under consideration. Lastly we develope several formulae
which eliminate the need to construct all of the Hasse
diagrams. Finally, explicit results obtained for t(n),

n<5, are derived.

In the third chapter we consider some related counting
problems, and present some known results concerning other
types of relations. For sake of completeness, results
obtained by Chatterji [4], on bounds for t(n) are aiso
given. PFinally an interesting approach which also gives
information concerning upper bounds for t(n), by determining
the maximum number k<2" of elements permissible in a family
:fof subsets of a set A such thatzy'forms a topology for A,

is presented.



CHAPTER I

PRELIMINARIES

In this chapter we present many definitions, notations
and relevant results, a few of which may be only indirectly
related to our work, in order to make this thesls completely

self contained.

1.1 Definitions and Notations

For the sake of clarity and uniformity definitions
concerning the theory of relations and sets are taken from
Halmos [6], except for a few which are not in Halmos and as
such are taken from Szdsz [9]; definitions in point set
topology are from Kelly [7]; and those in graph theory are
from Berge [1], and Bhargava and Ahlborn [2].

Since this thesis 1s concerned with counting problems

related to finite spaces we restrict our definitions to a

finite set, consisting of n elements, denoted by An={x1,x2,...,x

and referred to simply as A whenever n is fixed and no
ambiguity results. Similarly we use "A" for "set A" whenever
no confusion is possible. Throughout,the symbols x,y,z are
used to denote arbitrary (not necessarily distinct) elements

of A,

Definition 1.1.1. The Cartesian product of a set A with

itself, denoted by AxA, is the set of all ordered pair:c

(x,y), where x,yeA.

n

}



Definition 1.1.2. A relatlon R on a set A is a collection
of ordered pairs (x,y) belonging to the Cartesian product
AxA. We note that R may be empty. We use the notation
XRy to mean that (x,y)eR. Finally when we say "a relation

R" we mean a relation R on a set A has been defined.

Definition 1.1.3. A relation R 1s said to be reflexive if

XRx, for all xeA, symmetric if xRy implies yRx for all

X,yeA, and transitive if xRy and yRz imply xRz for all

X,¥,Z€cA.

Definition 1.1.4. A relation R is said to be an equivalence

relation on A if it is simultaneously reflexive, symmetric

and transitive.

Definition 1.1.5. Let R be an equivalence relation on A. An

equivalence class of A determined by xeA 1s the set of all yeA

such that xRy. The familyé? of all such subsets 1s called the

set of equivalence classes of A determined by R.

Definition 1.1.6. A partition ‘ﬂ)of‘ a set A is a disjoint

collection of non-empty sets whose union 1s A. The elements

ofzp are called classes of the partitilon.

Definition 1.1.7. A relation R is salid to be antisymmetric

if for all x,yeA, the simultaneous validity of xRy and yRx

implies that x=y.

Definition 1.1.8. A relation R on a set A 1s said to be a

partial ordering if it 1is simultaneously reflexfve, anti-




symmetric, and transitive, and we say that R partlally orders

the set A.

If a relation R partially orders a set A we write X<y
fo mean xRy, and x<y 1f xRy and x#y, for all x,yeA; and we
say that the set A is partially ordered by the relation "<",

or simply a partially ordered set A.

Definition 1.1.9. An element x of a partially ordered set A

is said to be a minimal (maximal) element if there is no yeA

such that y<x (x<y). An element x of A is called the least

(greatest) element of A if x<y (y<x), for all yeA.

Definition 1.1.10. Let x and y be arbitrary elements of a

partially ordered set A. Elements x and y are said to be

comparable if x<y or y<x; incomparable if neither x<y nor y<x.

Definition 1.1.11. A subset C of a partially ordered set A

is said to be a chain if any two elements of C are comparable

with respect to the partial ordering on A; and a chain to x,

if x is the greatest element in C. If a chain C has k elements

we say that the length of C 1s k-1.

Definition 1.1.12. Let A be a partially ordered set. An

element xeA is said to cover another element yeA 1f y<x and

there does not exist an element zeA such that y<z<x.

Definition 1.1.13. A Hasse diagram or simply (H-dilagram)

of a finite non-empty partially ordered set A 1s a graph



whose vertices are distinct elements of A and furthermore two
elements x,y are jJolned by a line segment if either x covers y

or y covers x. If x covers y the vertex x is said to be

higher than y.

Definition 1.1.14. Let the sets’ A and A* be partially ordered

with respect to the relations R and R* respectively. A
single-valued mapping 6 of A into A¥ is called an order pre-

serving mapping of A into A¥* if for all x,yeA, xRy implies

8(x) R* o(y). If 6”1 1s also an order preserving mapping

then 6 is called an order isomorphism. Furthermore, if there

is an order isomorphism of A onto A% then A is said to be

order isomorphic to A¥%,

Definition 1.1.15. Let A be a finite set andtybbe a family

of distinct subsets of A. Then efis a topology for A 1f the
following axioms are satisfied:

T-1. A and ¢ belong togf, where ¢ denotes the null set,

T-2. The union of any arbitrary collection of members
ofgais a member of@’, and

T-3. The intersection of any finite number of members

of:" is a member ofg.

The pair (A,gf) is called a topological space. The

members of g’are called open sets, and the complements of

members of?are called closed sets.

Definition 1.1.16., The closure of a subset B of a topo-

lugical space (A,if) is the intersection of the members of



the family of all closed sets containing B. The closure of

a set B is the smallest closed set containing B.

Definition 1.1.17. A closure operator "c" on a set A 1s an

operator which assigns to each subset B of A a subset B® or

A such that the following four postulates (called the Kuratowski

closure axioms) are satisfileg:

K-1. ¢ =9,
K-2. For each subset B of A, B g;BC,
K-3. For each subset B of A, B¢ = g%, and

K-4. For each pailr of subsets B and C of A, (BL)C)C=BCL)CC.

Definition 1.1.18. A topological space (A,:f) is said to be

a Ty-space if for any two distinct points x and y of A there
exlsts an open set containing one of these elements but not
the other; a Tl—space if all subsets of A consisting of

single elements are closed.

Definition 1.1.19. A function f on a topological space

(A,Zf) into a topological space (A*,gf*) is continuous if

the inverse of each open set in (A*,:f*) is an open set in

(8, %9).

Definition 1.1.20. A homeomorphism is a continuous-one-to

one mapping f of a topological space (A,D‘) onto a topo-
logical space (A*,:f*) such that its inverse image 1 o1s
also continuous. If there exists a homeomorphism f on a
topological space (A,%f) to a topological space (A*,sf*)

the two spaces are said to be homeomorphic.




Pefinition 1.1.21. A directed graph (or simply digraph)

consists of a set A, and a subset E of AxA, ¢€ECAxA, and
is denoted by r(A,E). If BCA, T(B,Ef\BxB) 1s said to be a

subdigraph of digraph T'(A,E). We note that a digraph is

also a relation. An ordered paif (x,y)eE is said to be a

directed edge from x to y.

Definition 1.1.22. The power set of a finite non-empty set

A, denoted by 2A, is the set of all subsets of A.

Definition 1.1.23. A subdigraoh P(B,Ef\BXB) of the digraph

r(A,E) is sald to define an open set Be2A, where 2A is the
power set, 1f for every pair of points (x,y) such that
xe(AvB) and yeB, (x,y)#E. A subdigraph F(B,Ef\BxB) of the

digraph T(A,E) is said to deflne a closed set Be2h if for

every pair of points (x,y) .xeB and ye(A~B) imply that

X,Y)£E.

1.2 Some Relevant Results

In this section we present some well known results
which are rather basic to our study in this thesis. These
results are stated, without proofs, in the form of theorems
for easy accessibility. The proper references are cited
immediately following each theorem, along with the page
number on which the proof appears in the original work.

Again we restrict our consideration to finlte sets,

although many of the theorems hold for arbltrary sets.
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Theorem 1.2.1. If R is an equivalence relation on A, then

the set of equivalence classes is a partition of A that
induces the relation R; and ii‘ﬂois a partition of A, then
the induced relation is an equivalence relation whose set

of equivalence classes is exactlyf® (Halmos [6] p. 28).

Theorem 1.2.2. Order isomorphlism is an equivalence relation

on the family of partial orderings of a set A (Szgsz [9]p. 17).

Theorem 1.2.3. Any finite partially ordered set has minimal

and maximal members (Birkhoff [3]p. 8).

Theorem 1.2.4, With chains, the notions minimal and least

(maximal and greatest) are identical. Hence any finite
subset of A has a first (=least) and a last element (Birkhoff

[31p. 9).

i)

Theorem 1.2.5. Every non-vold partially ordered set can be

represented by a Hasse diagram . Two partially ordered
sets can be represented by the same Hasse diagram 1f and

only if they are order isomorphic (Szdsz [9] pp. 18, 19).

Theorem 1.2.6. There is a one- to-one correspondence between

the partial orderings of a set A and the To-topologies on

A (Birkhoff [3]p. 14).

Theorem 1.2.7. Let "c¢" be closure operator on A. Let?ﬁbe

the family of all subsets B of A for which B®=B, and let
Sfbe the family of complements of members ofﬂ?& then ins

topology for A and BC is the closure of B for each subset B
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of A (Kelly [7]p. 43).

Theorem 1.2.8. Each digraph T(A,E) determines a unique

topological space (A,ZfE) wheresz = {B: Be2A, B open};
and the topology has the property of completely additive

closure (Bhargava and Ahlborn [2]p. 2).



CHAPTER 1II

TOPOLOGIES IN TERMS OF RELATIONS

In this chapter we begin by showlng the stages in the
evolution of the problem from that of counting topologles
on a finite non-empty set A to the equivalent problem of
counting the number of ways that the set A (or certain
families of subsets of A) can be partially ordered. We
then proceed to show how Hasse dlagrams are employed to
facilitate the counting of these partial orderings, and
present some formulae that eliminate the need to cdnstruct
many of the Hasse diagrams. Filnally we give explicit
results up to n=5 and partial results for n=b6.

2.1 Reformulation of the problem

Let ?fbe a family of functions from the finite non-
empty set A to the power set 2A, such that each member f
of‘Sﬂhas the following properties:

F-1. For all xeA, xef(x), and

F-2. For all x,yeA, yef(x) imply f(y)ef(x).
Furthermore we define f(¢)=¢ and for any subset B of A we
define f(B)=§ng(x), which we write as\J{f(x): xeBl}. Thus
£(x)=f({x}), f(A)=A, and also yef(x) and xef(y) implies
£(x)=f(y). For any BCA we write £(f(B))=£2(B).

The family Gfof functions satisfying the above con-
ditions is certainly not empty. ‘For, let A be any finite
non-empty set and let f be a function from A to 2A such that
for all xeA, f(x)={x}. Then f meets the requirements of the
definition.

-12-
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Before proceeding to the theorem 2.1.2 which shows that
all functions fe sf are closure operators on A, we present an
example which gives an indication of the usefulness of these
functions.

Example 2.1.1. Let A= {a,b,c,d,e} and let f be a

function from A to 2A such that:
i. f(a)={a,b,c,d,el, iii. f(e)={c,d,el, v. f(e)={lel},
ii. f(b)={b,e}, iv. f(d)={ad},
Conditions F-1 and F-2 are clearly satisfled. Proceeding
further we obtain:
vi. f({d,el}l)={d,el, ix. f({c,d,el)={c,d,el},
vii. f({b,el)={b,el, x. f({b,c,d,e})={b,c,d,el
viii. f({b,d,el})={b,d,el,
These, of course, do not list all the possibilities, but
are sufficient to illustrate the method. Except for i, 11,
ard 1ii we have listed only those subsets B of A for which
f(B)=B. We recall that f(¢)=¢,f(A)=A, Upon taking comple-

MY
ments, denoted by f, of the last seven subsets we get:

iv'. ¥({d})={a,b,c,e}l, viiirt. %({b,d,e})={a,c},
v'. F(le})={a,b,c,d}, i1x'. ft({c,d,el)={a,b},
vit. P({d,e})={a,b,c}, x'. fP(ib,c,d,e})={a}

vii'. ¥({b,e})={a,c,dl,
It can be easily shown that the family of subsets iv' through
x' along with ¢ and A forms a topology for A. Thus the

function f is a closure operator on A.
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Lemma 2.1.1. Let "c" be a closure operator on a finite

non-void empty set A, and let B and C be subsets of A.

Then BJC implies B® 3 c°.

Proof. For any subsets B, C of A, such that BJC we have:
B=CU (BrC), so that
BS = (cU(B~C))C
BC = CCLJ(BmC)C, by K-4, definition 1.1.17, and

Theorem 2.1.2. Letf}'be the family of all functions from an

arbltrary finite non-empty set A into 2&, satisfying con-
ditions F-1 and F-2, Then each fei? is a closure operator

on A. Hence each f determlnes a unique topology for A.

Proof. We show first that any feif satisfies postulates K-1
through K-4 of definition 1.1.17.

K-1'. f£(¢)=¢

K-2'. We show that for any BCA, BEf(B). By definition
f(B)=\J{f(x): xeB}, and the result now follows by F-1.

K-3'. Next we show that fz(B)=f(B), for any subset B of A.
Since f is a function from A to 2A, f(B)CA, for any BCA. By
K-2', £(B)ef?(B).

Conversely, we note

£2(B)=r(£(B))=\J{L(y):yef(B)} =\ULf(y):yeJ{f(x): xeB}}.

For any zef2(B) there exists at least one yef(B) such that

zef(y). Similarly yef(B) implies that there exists an xeB
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such that yef(x). By F-2 we have f(y)ef(x). Hence zef(x).
Since this is true for all zef2(B), we have f2(BX:Lj{f(X):XeB}=f(B)-

This concludes the proof that f2(B)=f(B).

K-4', Finally if B and C are arbitrary subsets of A, then
it can easily be checked that f(BUC)=f(B)U £(C).
Now we show that each closure operator "c" on A satisfies

F-1 and F-2.

F-1'. Let {x}CA, then by K-2 {x}{x}¢, and it follows that

xe{x}C.

F-2'. Let x,yeA with ye{x1}¢, then {y}C{x}®¢, It follows by

Lemma 1.2.1 that {y}°C {x}°®, and by K-3 that {y}°Cix}®.

Thus each fe%ﬁ 1s a closure operator on A and hence by
theorem 1.2.7 determines a unique topology for A.

Now we give a formulation in terms of relatlons. Leta
be a family of relations on A such that a relation ReG{
if and only if there is a corresponding function feﬂf such

that for all x,yeA,xRy if and only if yef(x).

Theorem 2.1.3. Let %3¢ be the family of all functions from a

finite non-void set A into 2A, satisfying conditions F-1 and
F-2, and 1et R be the family of relations defined above.
Then for each REOR there is a corresponding unique fe?f, such
that the conditions F-1 and F-2 on f are equivalent to the
following conditions on R:

R-1. For all xeA, xRx (reflexive), and

R-2. For all x,y,zeA, xRy and yRz imply xRz (transitive).



Proof. We first show that conditions F-1 and F-2 on f
satisfy R-1 and R-2 on R.

F-1'. PFor all xeA, xef(x) by definition of R.

F-2'. For x,y,zeA, let yef(x) and zef(y).
By F-2, f(y)ef(x), and f(z)ef(y). Hence f(z)Ef(x).
By F-1, zef(z). It follows that zef(x) or xRz.
Now we show that conditions R-1 and R-2 on R satisfy F-1 and
F-2 of f.
R-1'. For all xeA we have xRx and it follows that xef(x).
R-2'. Let x,yeA such that yef(x), then xRy. For any

zef(y) we have yRz, and by R-2 xRz, which imply zef(x).

The two preceeding theorems establish a one-to-one
correspondence between the reflexive and transitlve relations
on the set A and the topologles on A. We can summarize these
rest.its in the folliowia;, manner:

T-1,T-2,T-3¢PK-1,K-2,K-3,K-4QF-1,F-2&PR-1,R-2,

We can simplify the problem still further to the
counting of certain partial ordering relations by means of

theorem 2.1.5.

Lemma 2.1.4. LetﬁEﬁbe a family of functions from A to 2A,

and let "~" be a relation on A such that for every x,yeh,
xvy if and only 1f f(x)=f(y), where "=" means set equality
and fe?f. Then "~" is an equivalence relation on A.
Proof. 1) Since "=" is reflexive, f(x)=f(x) for all x.

Hence xvx. 11) For x,yeA, let xny.Then by definition f(x)=f(y)

M
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and since "=" 1s symmetric we have f(y)=f(x). Hence yvx.

iii) For x,y,zeA let xvy, yvz, it follows that f(x)=f(y)

oW

nd f(y)=f(z). By the transitive property of "=" we obtain
f(x)=f(z). Hence xvz.

Thus the relation "~" has the properties of reflexivity,
symmetry and transitivity and is therefore an equivalence
relation on A.

By theorem 1.2.1 the relation "a" in the above lemma
induces a partition e of A. We denote the equivalence
class of A determined by x with respect to "~" by
c(x), i.e. @ (x)={y: xvy}.

Remark 2.1.1. Since in the above lemma f(x)=f(y) 1s

equivalent to saying that X and y are symmetrically related
we can restate the definition of "~" by saying xvy if and

only if xRy and yRx.

Theorem 2.1.5. LetCR be the famlily of all reflexive and

transitive relations on a finite non-empty set A, Then each
Re R is either a partial ordering on A, or induces a unique
partial ordering on family(? of disjoint subsets of A whose
union is A.
Proof. For each reflexive transitive relation Re & we have
two possibilities:
i, If R is also antisymmetric then by definition R

is a partial ordering on A, and

ii. If R is not anti-symmetric then there exists at

least one pair of elements x,yeA, such that xRy and yRx.




By theorem 2.1.3 there is a unique function f from A into
2A satisfying F-1 and F-2, with yef(x) and xef(y). Hence
f(x)=f(y). By lemma 2.1.4 for each such function f there
exists a unique equivalence relation "~" on A such that for
x,yeA, xvy 1f and only if f(x)=f(y). For each xeA, we
denote the equivalence class of A induced by "+" as @ (x).

Now consider the relation R' on the familyé? of
equivalence classes of A, induced by "~", such that
@(X)R'Q(y) 1f and only if there exists an ae(® (x) and
be @ (y) such that aRb. We will show that R' is a partial
ordering on@ .

i. R' is reflexive. For each aeA, aRa by definition,

and it follows that @ (x)R'@(x), where ae@ (x).

11. Let@ (x),8(y),B8(2)ef, and 1et @ (x)R'Q (y) and
C(y)R'C (z). It follows that there exist a,b, and
¢ belonging to Q(x), &(y) and @ (z) respectively
such that aRb and bRc. By the transitivity of R
we have aRc. Hence@(x)R'@(z).

iii. To show that R' 1s antisymmetrilic, consider two
distinct elements Q(x),@(y)s@. 16 (x)R'E (y)
and@(y)R'é’(x) then there exist a,a'eQ (x) and
b,b'ef (y) such that aRb and b'Ra'. By the remark
2.1.1 a'Ra and bRb'. The transitive property of
R implies a'Rb and a'Rb', from this it follows
f(a)=f(b") oréo(a')=GJ(b'), a contradiction. Hence
R' is antisymmetric.

Thus R' is a partial ordering on@, and the theorem is proved.
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We have essentially reduced the problem of determining
t(n), the number of topologies on a finite set, to counting
the number of partial orders on A, and on dlsjoint families
of subsets of A whose union is A. We write t (n) for the
number of partial orders on A, where A is a finite non-
empty set consisting of n elements.

We also note here that by theorem 1.2.6 every partial
ordering relation on the set A represents a To—topology.
Hence to(n) is also the number of T,-topologies on A. Thus
all the topologies on a finite non-empty set A can be
determined by counting only the T -topologies on A and on
partitions of A. Let tl(n) be the number of Tj-topologiles
on A,

Lemma 2.1.6. For any finite non-empty set A, t;(n)=1, and

this topology J is the discrete topology (i.e. every subset
B of Ais in?).

Proof. Let Y ve any T,-topological space on A. Then by
definition 1.1.18 for all xeA,{x1}®={x}. By theorem 2.1.2
there exists an feEF, such that f({x})=f(x)={x}. It follows
that for every B€A, f(B)=B, which in turn implies that for
all BecA, %(b)er. Thus for every BE€A, Bed . Certainly
there 1s only one discrete topology on each set A, hHence f

is unique.

Lemma 2.1.7. Let R' be a partial ordering on a disjolnt

family @ of sets whose union is a finite non-empty set A.
Then there 1is a corresponding reflexive, transitive relation

R on A,
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Proof. For all xeA let§ (x) be the member of § to which x
belongs. By theorem 1.2.1 there exists an equivalence
relation, say "~" on @ such that the members of@ are
precisely the equivalence classes induced by "~".

Now we define a relation R on A by saying that for all
Xx,yeA, xRy 1f and only if @(x) R'@(y). Using the equiva-
lence relation "~" we can easily show that R 1s a reflexive,
transitive relation on A.

For every partition of a finite non-vold set A con-
sisting of n elements the family @ of equivalence classes
has at most n members. Using the two preceeding results

we : =
now say that t(n) kzlnn’k to(k), where nn,k is the

number of partitions of A into k non-empty disjoint subsets.
With this we conclude the reformulation of the problem.
Now it remains to be shown how we propose to count the partial

orderings by means of Hasse diagrams.

2.2 Hasse Diagrams

In this section we give a detailed description.of the
so called Hasse diagrams (k-diagrams), and show how they
are used to represent the partial orderings (To—topologies)
on a finite non-empty set A . We also show how we obtain
the open sets of the topologies determined by the Hasse
diagrams. For convenience we repeat the remark that 1if a
relation R partilally orders a set A we write x<y to mean
XRy, and x<y 1if xRy and x#¥y.

Let 4 be a map on set A,, or simply A (partially ordered
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by the relation "<") into the set of non-negative integers
such that for all xeA, d(x) is length of the maximal chain
to x, 1.e. d(x)=max{k|{3 x <xy< ... <x_;<x}. We adopt the
convention that d(x)=0 if and only if there is no y(y#x)
in A such that y<x, that is, x 1s unrelated to any other

element in A,. Clearly, O<k<n-1.

Lemma 2.2.1. If x and y are distinct elements of a finite

non-empty partially ordered set A, and d(x)=d(y), then x

and y are not comparable.

Proof. Let x,yeA, x#y with d(x)=d(y), and assume that x
and y are comparable. It follows that elther x<y or y<x;
let us suppose that x<y. If d(x) = k, O<k<n-2, then
d(y)=max{(k+£) | xo<X1< v+ <Xp_1<X<YR41<. .. <Phapo1<¥ ),
l<€<(n-k-1). Since k+{>k we cannot have d(y)=k. Hence we
obtain a contradiction of the hypothesis that di{x)=d(y),

and x and y are not comparable.

Lemma 2.2.2. Let A be a finlte non-void set partially

ordered by the relation "R". Then there exists an acA

such that d(a)=k, where k=maﬁ d(x).
Xe

Proof. By theorem 1.2.3 every partially ordered set has at
least one maximal element. Let M be the set of maximal
elements of A. For each xeM let d(x)=1, O<i<n-1l, and let
I=§é&i: d(x)=1}. Clearly I is a finite partially ordered

set and furthermore for each pair 1,jel, either i<j or j<i.
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Thus I is a chaln and it follows by theorem 1.2.4 that I has
a greatest element, say, k; i.e. k=maX d(x). Therefore there
Xe

exists an element aeA such that d(a)=k, where k=§§ﬁ d(x)

Remark 2.2.1. It follows from the definition of "d" that

if L=max d(x) there is a chain C={x_, Xy,...,X;} consisting
of L+l elements and an XL€C such that d(xp)=L. It is also
clear that for each x3eC, d(x;)=1i, for if this was not the

case we would have a contradiction that L=§§X a(x).

Theorem 2.2.3. Let A be a finite non-void set partially

ordered by the relation "<". Then the function d induces
a partition of A into k+1l classes Sj such that Sj={x:d(x)=j},

j=0,1,2,...,k, where k=§§ﬁ d(x), O<k<n-1.

Proof. Let "~" be a relation on A such that for all x,yeA,
xvy if and only if d(x)=d(y). Now "a" is an equivalence
relation on A. The proof of this is exactly the same as
that of lemma 2.1.4. with f replaced by d. By theorem 1.2.1,
it follows that "~" induces a partition of A into a family
of equivalence classes denoted by S(x)={y: xvyl={y: d(x)=4(y)}.
By the remark 2.2.1 k=pax d(x) implies that there is a chain
C of k+l elements such that for each x4eC, d(xi)=i, i=0,1,2,...
It is then clear that d induces a partition of A into k+l
classes such that Sj=S(xJ)={X1d(X)=J}-

With the help of these results we proceed to form tlie
Hasse diagrams. Let A be a non-vold set partially ordered

it

by the relation "<", and let k=§%ﬁ d(x). Then by theorem

2.2.3 there exists a partition of A into k+1 subsets denoted




by 8;= {x: da(x)=J}, j=0,1,...,k. We place the elements in
cach Sj’ j=0,1,...k, into rows, such that only the elements

of Sj are in the jth row. Arrange rows so that the jth row

is above the 1M row i1f and only if j§ is greater than 1.

It x,yeA, be elements of the 1th(Si) and jth(Sj) rOWS
respectively and let j»>i. We join x and y (by a line segment)
If and only if y covers x. Two points in the same row are

not to be joined since by lemma 2.2.1 they are not com-
parable. Furthermore each point of the ith row must be

joined to some point of the 1-15% row. & point x of the ith

th now (j>1) only

row may be joined with a point y of the j
if there is no point 1in an intermediate row which 1s joined
to both of them, i.e. if and only if y covers x. We now

give a graphical illustration of the notion of Hasse diagrams.

Example 2.2.1. Let A = {a,b,c,d,e} be partially ordered

Wer
b<c,

by the relation "<" in the following manner, a<d,
b<d, b<e, c<e, c<d with the remaining pairs of elements

being incomparable. Since there 1s no element xeA such that
x<a we have d(a)=0, similarly d(b)=0, the only element which
precedes ¢ is b, so d(c)=1. By the transitive property of
partially ordered sets we have b<c<d as the maximal chain

to d, hence d(d)=2, and likewise d(e)=2. We have S, = {a,b},
S1={c} and Sp={d,e}, Placing the elements of S, in the oth

nd row, and connecting

TOW, Sl in the lSt row and S2 in the 2
the rows in the prescribed manner we obtaln the Hasse diagram

below:
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a b

In order to obtain open sets from H-diagrams we note
that by definition 1.1.2 each partial ordering relation
on a set A is a subset of AxA. Hence each partial ordering
relation denoted by "<" can be represented by a digraph
I'(A,<). It follows from the deflnition of an open set of
a digraph that a set Be2h 1is open if for every pair of
points (x,y) such that xe(AvB) and yeB then (x,y)é<. 1In
terms of relations a set Be2h is open if for every xe (AvB)
and yeB xiy, that is, no element in B covers an element in
(AvB). Thus in the preceding example the sets which satisfy
this condition are
A,¢,{a},{b},{a,b},{b,c},{a,b,c},{b,c,e},{a,b,c,d}, and
{a,b,c,e}. It is ecasily shown that this family of subsets
of A does indeed form a topology for A.

Thus in this section we have characterized Hasse diagrams
and shown how a topology is determined by each H-dlagram.
In the next section we present a procedure which makes the
process of counting more systematic than if we tried to
count topologies without resorting to the reformulation
given in section 2.1.

2.3 Counting Procedure

It is not necessary to construct every Hasse dlagram

which represents a partial ordering on a finite non-void

set A partially ordered by the relation "<", for as theorem
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1.2.5 states, two partially ordered sets can be represented
by the same Hasse diagram if and only if they are order
isomorphic. Hence we need construct only those H-diagrams
which represent distinct (non-order isomorphic) partial
orderings on A. Then using elementary combinatorial
techniques we coun:c the order isomorphic partial orderings
represented by each distinct Hasse diagram.

The first step is to obtain the number of partitions
of the set A into k+1, k=0,1,2,...,n-1, subsets Sj,
j=0,1,...,k, where k=§2ﬁ d(x). In combinatorial terminology
the problem reduces to finding the number of ways in which n

indistinguishable objects can be placed into k+1 cells such

that none of the cells is empty. There are (nil) ways in

which this can be done (see Feller [5] p. 37). It follows

n=l n-1 n-1
L (TgT)=e

k=0
We now give an example to show how a set of five elements

that the total number of such partitions of A is

can be partitioned in the desired manner.

Example 2.3.1. For any set of five indistinguishable

elements there are 2u=16 distinct partitions of the set
into k=1,2,...,5 cells.

1) .. 11)  .ns 111) . iv)

v) .. vi) : vii) ... vitii) ...

ix) .: X) :: xi) .. xii)
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xiii) . xiv) .. xv) .. xvi) .

The next step 1s to determine the number of distinct
H-diagrams which can be obtained from each of the 2871
partitions. There is no known formulation which directly
gives the total number of H-diagrams. However, we have
some formulae presented in the next section which give us
a partial solution to the problem. Filrst we give (using
partition (x) of example 2.3.1) some examples which indicate

the counting procedure when no general formula is available.

Example 2.3.2.

I ¢ S2 II y III IV

| N

These are the only distinct H-diagrams: any other
H-diagram would be order isomorphic to one of the above

H-diagrams. Consider the following example.

Example 2.3.3. We give a diagram III' which at first

appears to be different than III of the above example but
is actually order isomorphic to it. For sake of clarity

and without loss of generality we label the points with
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elements of the two sets A={a,b,c,d,e} and A'={a',b',c',d",e"}

as follows:

a b a' W0
c  d c'! bd!
e e!

To show that the two sets A and A' are order isomorphic
define a function 6 from A onto A' as follows: #6(a)=a',
6(b)=b', 6(c)=4d', 8(d)=c' and 6(e)=e'. This is clearly a
one-to-one mapping of A onto A' which preserves order.
Hence ITI and III' are order isomorphic.

The final step is to determine how many order isomorphic
partial orderings of the set A are represented by each
distinct H-diagram. We use the H-diagrams of example 2.3.2
to demonstrate how this is done. For figure I of example
2.3.2 there are (g) ways of choosing the elements in S,,
(5) ways of choosing the 2 elements in S; and only 1 way

of putting the remaining element in S, and 2 ways of con-

necting the elements in 52 with the elements 1in Sl' Hence
there are (g) . (5) « 2=60 order isomorphic partial orders
represented by I. Similarly there are also 60 partial
orderings represented by each of figures II, III, and 30

represented by IV. Thus there are 210 T, -topologiles obtained

0
from just one partition of A.
Using the method described above we are theoretically

able to determine all the partial orderings of a given set

A. If R is a reflexive, transitive relation on a set A
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which is not a partial ordering of A then the following
example 1llustrates how we count the Ty-topologiles induced

by R on a family of subsets of A.

Example 2.3.4. Let A= {a,b,c,d,e} and let R be a relation

such that aRb, bRa, bRe, cRb, bRe, aRc, cRa, aRd, cRd, cRe.
R is not a partial ordering on A, since the pairs (a,b),
(a,c), and (b,c) are symmetrically related by R. Using
theorem 2.1.5 it follows that R induces a partial ordering
R' on the family(g = {{a,b,c}, {d}, {e}} such that
{a,b,c,} R'{d},{a,b,c,} R'{e} and {d}R'{e}. The H-diagram
of this partial ordering is .

{e}

{a}

a,b,c}
We see that this H-diagram represents twenty order i1so-
morphic reflexive and transitive relations on A. In the
actual counting of the relations which are not partial
orderings of a set A we do not explicitly use the method

n-1
above but rely on the formula f(n)= ) n_  f (K)+f (n).
ki1 ko

2.4 Some counting formulae

In this section we present a number of formulae which
reduce the task of constructing all the H-diagrams representing
the partial orderings of a set. For convenience we introduce.
some additional notation. Let Pk(n) be the number of

partial orderings on a set A with k = max d(x).
XehA
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n-1

Then f_(n)= ] Py(n). The first two formulae in this
k=1

followlng theorem were developed by Chatterji [Q].

Theorem 2.4.1. Let A be a finite non-empty partially

ordered set. Then,

P-0. Py(n)=1

P-1. Py(n)= % (p) (2" F-1)T, and

k=1

P-2. P _;(n)=n!
Proof. P-0. If pax d(x)=0, then for all xeA, d(x)=0.
It follows that P (n)=1.
P-1. For k=1 we have a partition of A into two disjoint
non-empty subsets S_ and S; with A=S,\US;. There are (3)
ways of choosing the r elements in S;. For each of these
we have the two alternatives of connecting or not connecting

N=T .hoices. Each

it to each of n-r elements in S,; 1.e. 2
of the elements 1n Sl must be connected to at least one of
the elements in S, so for each element in S, we have on-r-1
choices. Thus for each r(l<r<n-1) we get (2R"T_1)T gifferent
H-diagrams (partial orderings). Summing from r=1 to r=n-1 we
arrive at the desired result.

P-2. Since n—l=§gﬁ d(x) we have a partition of A into n
subsets, denoted by SJ’ j=0,1,2,...,n-1. Thls can be done

in only one distinct way. The n elements can be placed

in the n S!s in n! ways. Hence P,_j(n)=n!,

J

2.5 Counting Results

In this section we present the results which we obtained
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using the method described in the preceeding sections. We
summarize our findings in the two tables below. The first
fable contains the number of To—topologies found by using
the formulae in section 2.4, or by actual construction of
Hasse diagrams when no formula was available. The number
of topologies which are not TO was found by summing the
first n-1 terms of the formula f(n)= kElnn,kfo(k). In the
second chart we present only the number of homeomorphic
topologies, that is, the topologies which are assoclated
wlth the non-order isomorphic partial orderings. We present

complete results for n=5 and only partial results for n=6.

Table 2.5.1
n= 1 2 3 4 5 6
fo(n)= 1 3 19 219 4411
flfﬂlnn,kfo(kk 0 1 10 136 2749 82,173
e f(n)= 1 4 29 355 7160
Table 2.5.2
n= 1 2 3 b 5
f*o(n)= 1 2 5 17 63
T kftoto= o 1 b 11 16
K=t f#(n)= 1 3 9 34 139

In table 2.5.2 f¥(n) is the number of non-homeomorphic
topologies, and fg(n) the number of non-homeomorphic T -topo-
logies on a finite set A . Using computer techniques

Krishnamurthy [9] obtained the values 1,4, 29 and 355

respectively. However he does not distingulsh between the
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number of Ty and non-Ty~topologles, nor does he obtain

values for the number of non-homeomorphic topologies gilven

«HD.l

no

in Table



CHAPTER III

RELATED PROBLEMS

In this chapter we consider some problems related to
the counting of topologies on finite sets. The first section
contains information concerning the number of certain
types of relations on a set, and alsc bounds found Dby
Chatterji [4] for t(n).

In the second section we consider the problem of
determining the maximum number k<2® of subsets permissible
in a familyyof‘ subsets of a finite set A such that @’
forms a topology for A.

Section 3.1 Bounds for t(n)

First we present some known results concerning the
number of various types of relations on a finite set A.

Let Ql’ qz, G3, 0\11 respectively be the famillies
of reflexive, transitive, symmetric, anti-symmetric relations
on a finite set A, anda be the family of all relations on A.

We present in the following table some known results
(see Chatterji [4]) on the number of various types of
relations on a set A. For any subset R ofCﬂ let u(R) be

the number of elements in R.

-32-
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Table 3.1
R u(R) R u(R)
&, 0 (n-1) ANk, £(n)
R, o) Rin® N8 ri(n)
a3 n(r21+1) Gln‘ﬂ 2’\“3 B,

By 1s an exponential number; for further details we
refer to Rota [10].

In his paper Chatterjl obtains bounds for t(n). A
lower bound for P;(n) is obtained as a lower bound for t(n),
and as an upper bound we use the number of reflexive
relations on A. Thus,

) rl;<t(n)<2n(n—l)

The upper bound is the same as the one obtained by

Krishnamurthy [8].

3.2 Another approach

As we have shown, by lemma 2.1.6, for each non-empty
finite set A consisting of n elements there 1s a topology
for A consisting of all the 2 subsets of A; this is the
largest topology possible on A. An interesting question
is what is the next largest number of subsets of A which
form a topology for A? The largest topology on A corresponds
to the case when each of the singleton sets 1s closed.
The next largest corresponds to the case when one of the
singleton sets is not closed. Using theorems 2.1.2 and 2.1.3
the last statement 1s equivalent to saying that there is

a reflexive and transitive relation R on A such that there
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exlsts a pair of elements say x, and x,_7 of A with anXn_l

n

and for all other xﬂxjsA, i#j, xinj. The relation R is

evidently a partial ordering relation and hence can be

represented by a Hasse diagram of the following form:

%n

e X1 X250 5.Xp_D /Xl’l—l
Now a subset B of A 1s open if no element in B covers an
element in (AnB). The singleton se¢s {x;} through {xn-1}

in the above H-diagram obviously satisfy this condition,

and {x,,x,_37} is also open. Since the union of any arbitrary

number of open sets 1is open, we obtain on-1 open sets from

the first n-1 singleton sets. The union of each of the

2n—2 open sets, obtained by arbitrary unions of the first

n-2 singleton sets, with the set {xn,xn_l} i1s also open.

Now any other set cannot be open since it would contain

X, and not x,_, and hence would not satisfy the necessary

n-2 .on-2

condition for openness. Adding on-1 ana 2 we get 3
open sets in the second largest topology on A. To get the
number of elements in the third largest topology on A we

would have x,, covering two elements in the above H-diagram,

n

and proceeding in the manner above we obtain 5-2n—3 open

sets.

In general if an element say X, of A covers the k
elements x,_, to x,_; with each of the remaining n-k-1
elements being unrelated to any other element, we have

on-1 open sets formed by taking arbitrary unions of the

singleton sets {x;} through {Xn—l}' The sets formed by
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3 3 e with each
taking the union of the set {xn—k’ X —k+1°® ,xn}

of the 2n—K-1 sets formed by taking unions of the singleton

sets {xq}, {x5},...1 1} will also be open. Adding on-1

X
n-k-
and 28-K-1 we obtain (2K+1) 2R-K-1 open sets. Any other
subset B of A will not be open, since it will contain X,
but will not contain at least one of the elements

Xnok> ¥pok+12 2 ¥p-1" This will be the number of sets in
the k+15% largest topology on A. Thus we have proved the

following theorem.

Theorem 3.2.1. Let A be a finite non-void set consisting

of n elements. Then the number of elements in the (k+1)St,

k=0,1,...,n-1, largest topology for A is (2K+1)2n-kK-1,

In closing we wish to remark that there 1s more than

one such topology for each k. In fact there are n'(ngl)



V as »

[5]

[6]

(7]

[8]

[9]

[10]

[11]

36
REFERENCES

Berge, C., Theory of Graphs, Translated by Alison Dolg,
John Wiley and Sons, Inc., N.Y., 1962.

-}

Bhargava, T. N. and Ah

T igraph Topology,
submitted fo

born, T. J., Cn
publication.

1
r

Birkhoff, G., Lattice Theory, American Mathematical
Soclety, New York City, 1940.

Chatterji, S. D., On Counting Tcpologies, Technical
Report No. 4, NASA Grant No. NsG-568, Kent,
Ohio, 1964.

Feller, W., An Introduction to Probability Theory and its
Applications, Second Edition, Wiley, New York,
1957.

Halmos, P., Naive Set Theory, Van Nostrand, Princeton,
N.J., 1960.

Kelley, J. L., General Topology, Van Nostrand, Princeton,
N.J., 1955.

Krishnamurthy, V., "On the Number of Topologies on a
Finite Set", The American Mathematical Monthly,
Buffalo, N. Y., V. 73, 1966.

Szdsz, G., Introduction to Lattice Theory, Academic Press,
New York, 1963.

Rota, G., "The Number of Partitions of a Set", The American
Mathematical Monthly, Buffalo, N.Y., V. 69, 1962.

Vaidyanathaswany, R., Set Topology, Chelsea Publishing
Co., New York, 1960.




